CAAFI Biennial General Meeting June 2, 2022 ## **Overview of FORGE LTH Process** ### **FORGE Technology Overview** **Technology:** FORGE's Lipid-to-Hydrocarbon (LTH) technology offers a low-cost, low-GHG and high-yield approach to produce drop-in renewable fuels that are indistinguishable from petroleum-based fuels. Unlike other renewable diesel technologies, the LTH process does <u>not</u> require hydrogen <u>nor</u> sensitive catalysts, which allows for the ability to utilize lower cost, 'dirty' feedstocks without extensive pre-processing. Core Advantage: Hydrocarbon profile that is highly suited to be converted into SAF Markets: Compliance mandates (California LCFS, Cdn. CFR), Renewable Diesel / Sustainable Aviation Fuel Planned Off-take: World Energy BIOX; Shell (ROFO); Canadian gov't fleets | Business Model | Build-own-operate (BOO) | | | | |----------------|--|--|--|--| | Pilot Updates | Meets CGSB and ASTM standard specifications for renewable diesel Large variety of feedstock tested (clean/dirty/virgin) Equipment selection / process trials | | | | | Patent Status | Awarded | | | | ### FORGE Lipids-to-Hydrocarbon (LTH) Technology Process ### LTH Technology: Four Distinct Advantages 1 #### **Competitive Performance Without Catalysts or Hydrogen** The LTH technology offers a cost-effective "drop-in" fungible renewable fuel that meets/ exceeds petroleum standards, requiring no special infrastructure or additional processing 2 #### **Simpler, Less Capital Intensive Process** The LTH process is simpler than its competitors because it doesn't use catalysts or H2, allowing for a reduced capital intensity compared to HVO. This enables smaller plants, better matched to local waste oil supply chain. 3 #### **Lower Carbon Intensity and Input Cost** FORGE can utilize a range of 'dirty', high fatty acid, waste feedstocks which have lower costs, lower carbon intensities and greater societal acceptance than cleaner feedstocks required for current commercial processes 4 #### **Unique Hydrocarbon Profile** FORGE technology produces renewable diesel with a hydrocarbon profile that is highly suitable to be isomerized into SAF – resulting in higher Yields, higher quality SAF at lower cost. ## **FORGE Sustainable Aviation Fuel** ### **FORGE Hydrocarbons SAF Process Overview** ### FORGE SAF offers benefits over other SAF fuels #### **Utilization of Waste Feedstock** Ability to use lower Quality feedstocks that competing SAF technologies such as HEFA would be limited in using or require very expensive pre-treatment #### Up to ~80% Emission Reductions FORGE has a CI that is up to ~80% less than conventional fossil fuel diesel depending on feedstock used #### 'Drop-in Ready' Fuel FORGE SAF fuel is chemically indistinguishable from petroleum-based jet. Some SAF technologies such as ATJ do not meet the D7566 Extended Table 1 distillation range requirements #### **Enhanced Performance** FORGE SAF as seen in the Sky's the Limit COA is excellent quality #### **Analytical Results for FORGE SAF** | TESTS | UNITS | JNITS ASTM METHODS | | SPECIFICATIONS | | Results | | |---------------------------------|------------|--------------------|--------------------|----------------|-----------------|---------|--| | ASTM D7566 - Table 1 (Required) | | | | | | | | | Acid Number | mg KOH/g | ASTM | D3242 | Max. | 0.1 | 0.004 | | | Aromatics | % volume | ASTM | D1319 | Max. | 25 | <5.0 | | | Mercaptan Sulphur | % mass | ASTM | D3227 | Max. | 0.003 | <0.0003 | | | Total Sulphur Content | % mass | ASTM | D4294 | Max. | 0.3 | 3.0 | | | Distillation Temperature: | | ASTM | D86 | | | | | | 10% Recovered | °C | | | Max. | 205 | 176.4 | | | 50% Recovered | °C | | | | Report | 226.4 | | | 90% Recovered | °C | | | | Report | 274.6 | | | Final Boiling Point | °C | | | Max. | 300 | 284.8 | | | Distillation Residue | % volume | | | Max. | 1.5 | 1.2 | | | Distillation Loss | % volume | | | Max. | 1.5 | 0.4 | | | Flash Point | °C | ASTM | ը 56 | Min. | 38 | 46.0 | | | Density @ 15°C | kg/m3 | ASTM | D-052 | | 775 - 840 | 781.2 | | | Freezing Point | °C | ASTM | D 5972 | Max. | -40 (Jet A) / - | | | | | | | | | 47 (Jet A-1) | -54.5 | | | Viscosity @ -20°C | mm²/s | ASTM | D <mark>445</mark> | Max. | 8 | 6.250 | | | Net Heat of Combustion | MJ/kg | ASTM | D4 809 | Min. | 42.8 | 43.996 | | | Smoke Point | mm | ASTM | D1322 | Min. | 25 | 42.6 | | | Copper Strip, 2 hrs @ 100°C | | ASTM | D130 | Max. | No. 1 | 1A | | | Filter Pressure Drop, 2.5hrs @ | mm Hg | ASTM | D3241 | Max. | 25 | | | | 260°C | | | \ | | | 0 | | | Tube Rating: | | | | | | | | | Annex A1 VTR | Color Code | ASTM | D324. | < | 3 | 1 | | | or | | | | | | | | | Annex A2 ITR or Annex A3 ETR | nm avg | ASTM | D3241 | Max. | 85 | 13 | | | Existent Gum | mg/100 mL | ASTM | D381 | Max. | 7 | <1 | | | Microseparometer: | | | | | | | | | without electrical conductivity | Rating | ASTM | D3948 | Min. | 85 | | | | additive | | | | | J | 95 | | # **FORGE Team and Project Status** ### **FORGE Commercialization Timeline** #### First Commercial Plant in Sombra Ontario - FORGE is constructing a 28 Mil L/yr commercial plant in 2022 - Agreement is in place with World Energy to procure feedstock and broker produced fuels - FORGE plans to pursue a global build-own-operate replicable roll-out strategy on its own and with partners - SAF Module for Sombra RD plant Commercial Plant (2024) Sombra SAF Module (~2025) 5) SAF module addition Commercial Plant Roll-Out (2024+) - Modular build and expansion opportunities - 2x new plants per year - Scaling up to commercial RD plant with 28 million L/yr capacity - FID Q4 2022, and commissioning/ramp up in Q4 2023 - Commercial Plant Roll-out (2024) - EPA Pathway Approval/Registration #### Pilot Plant Initial Technology Demonstration - ✓ 200,000 L/yr demonstration plant in Edmonton, AB - ✓ Design and purchasing complete - ✓ Commissioning effective Q1 2014 Proof of Concept - ✓ Micro-tubular reactor in continuous mode - ✓ IP Protection Filings - √ 1L custom fabricated continuous reactor system - ✓ Commissioned and upgraded ✓ Completed ### **FORGE Strategic Partners** - Shell strategic partner and investor an aligned vision to decarbonization - REG strategic partner, biodiesel and traditional HDRD production with goals for SAF production - World Energy marketing and sales agreement, only SAF producer in North America - University of Alberta ongoing R&D, next generation technologies - Valent Low-Carbon Technologies ecosystem: - FORGE RD and SAF - Nu:ionic green hydrogen - Mara Renewables Corp. algal oil - Katal novel drop-in nano emulsion fuel enhancer - Auterra desulphurization technology ## **FORGE Management Team** | Tim Haig
Founder, CEO | 25 years of experience in the field of strategic business development with an emphasis on
environmental technologies and engineering. Co-founded BIOX Corporation in 2000 and took
the company from a laboratory experiment to a publicly traded company on the TSX | |--|---| | Lisa Bruce
FORGE CFO | Senior finance executive with 15 years of financial management experience in financial reporting,
financial budgeting and forecasting, financial analysis and cash and treasury management.
Strong expertise in systems and process implementations | | Neil Van
Knotsenburg
VP Projects | 30 years of experience in large scale industrial and process construction and engineering
projects with companies like Xerox Corporation and Pittsburgh Paints. experience in Research,
Development and Commercialization of renewable fuels technologies. Early developer of
Canada's first and largest production biodiesel facilities. | | Carla Brenner Engineering Manager, Projects | 20 years of experience in project management, process development and equipment design both in commercial ethanol and pilot plants for agriculture product development Contributed to research in biodegradable plastics and renewable chemical production. | | Nak Paik,
VP Operations | Over 30 years of engineering and project management experience Nearly 20 years of experience in the development, commercialization, and operations of renewable fuels technologies at BIOX Corporation and World Energy LLC | | David Bressler Inventor and Scientific Advisor | 60 peer-reviewed journals and carries out research in industrial application of chemical, thermal,
and biological systems for the conversion of conventional agricultural products to biofuels.
Inventor of the Lipid-to-Hydrocarbon (LTH) technology | | Karlis Vasarais
Valent EVP | 15 years of cleantech commercialization program management and strategic financing
experience with StormFisher Biogas (\$30m biogas plant) and GreenMantra Technologies (\$20m
plastics upcycling chemistry) and Imtex Membranes (\$20m petrochemical membranes). |