R+D Team April 17, 2013

Michael Lakeman- CAAFI R+D Team Co-chair Director, Biofuel Technology Strategy Boeing Commercial Airplanes

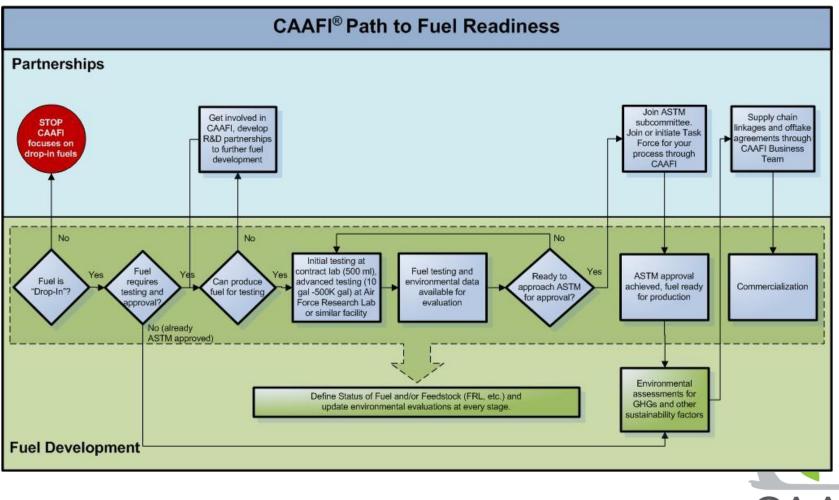
R+D Team mission statement

To <u>identify</u>, <u>prioritize</u> and <u>communicate</u> critical technology gaps that, if addressed, would potentially lead to cheaper, scalable, and more widely available production of aviation alternative fuels

Fuel Readiness Level

FRI	Description	Toll Gate	Fuel Quantity+
1	Basic Principles Observed and Reported	Feedstock /process principles identified.	
2	Technology Concept Formulated	Feedstock /complete process identified.	
3	Proof of Concept	Lab scale fuel sample produced from realistic production feedstock. Energy balance analysis executed for initial environmental assessment. Basic fuel properties validated.	0.13 US gallons (500 ml)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Preliminary Technical Evaluation		10 US gallons (37.8 litres)
5	Process Validation	Sequential scaling from laboratory to pilot plant	80 US gallons (302.8 litres) to 225,000 US gallons (851,718 litres)
6	Full-Scale Technical Evaluation	Fitness, fuel properties,	80 US gallons (302.8 litres) to 225,000 US gallons (851,718 litres)
7	Fuel Approval	Fuel class/type listed in international fuel standards**	
8	Commercialization Validated	Business model validated for production airline/military purchase agreements – Facility specific GHG assessment conducted to internationally accepted independent methodology	
20 9	Production Capability Established	Full scale plant operational++	

Feedstock Readiness Level


FEEDSTOCK READINESS LEVEL (FSRL) TOOL of Testing on Palitically a and support 5.4 Internite factory of Automatic Science Pail and a pla

Readiness components

- Production
- Market
- Policy/Regulatory
- Linkage to conversion

Path to Fuel Readiness

CAAFI

Technology gap identification

- Concept proposed through membership input at 2011 Annual Meeting
- Solicited technology gaps/challenges from membership through mid-2012
- R+D team chairs "rolled-up" suggestions and drafted white papers
- Additional input gathered from gap proposers
- Drafts reviewed, revised, prioritized at R+D Team meeting, Dec 2012
- White papers in final review with R+D team membership
- Distribution Q2, 2012

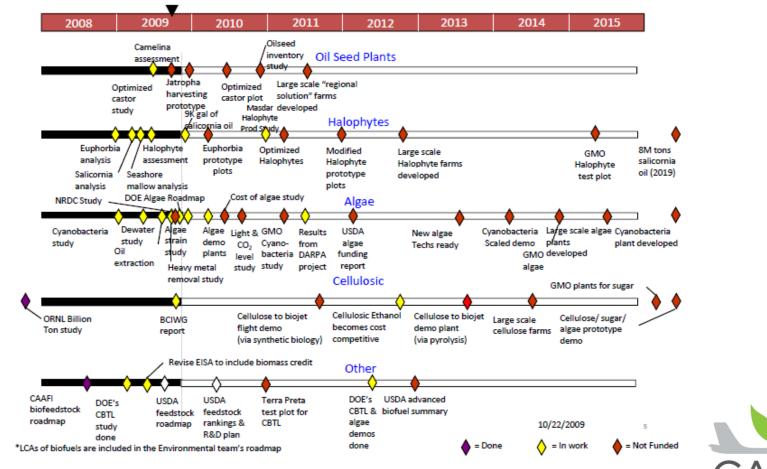
White papers on gap identification

Critical enablers requiring immediate development:

- 1) Flexible economic and engineering
- 2) Detailed analyses of fuel chemistry effects on fuel properties

R&D with near- and mid-term return on investment:

- 3) HEFA Feedstock cost reduction
- 4) Development of crosscutting
- 5) Feedstock production systems that incorporate diversity
- 6) Waste as feedstocks for alternative fuels


Sustained R&D on high benefit, low readiness level processes:

7) Direct collection and conversion of atmospheric CO2 to fuels

Refinement of Roadmap Tools

Level 3 **Research and Development** (1 of 6) Feedstock

Thank you

Michael Lakeman, Ph.D. michael.b.lakeman@boeing.com +1 206 766 1580

On behalf of

Steve Kramer, P+W Mike Epstein, GE Kristin Lewis, Volpe Center

