

National Institute of Food and Agriculture

- The Bioenergy, Bioproduct Bioeconomy (B3) Portfolio historically provides unique approaches to building supply chains and value propositions through research, education, and Extension
- Supports Bioeconomy through competitive and capacity grant programs
- **AFRI**: Agriculture and Food Research Initiative
 - Coordinated Agricultural Projects (CAPs)
 - Integrate research, development, demonstration, education/workforce development, Extension/outreach/tech transfer
 - Regional biomass supply chains linked to bioeconomic value propositions (biofuels, biobased chemicals and products)
 - Foundational Program grants address bioproducts (e.g. lignin, nano-cellulosics), policy, social and environmental impacts, crop development and evaluation
- **SBIR**: Small Business Innovation Research
- USDA & DOE Joint Solicitations
 - Plant Feedstock Genomics Program (with DOE-OS-BER)
 - Biorefinery Optimization (with DOE-BETO)
 - Biomass Research and Development Initiative (with DOE-BETO)

World's First Commercial Cellulosic Biofuels Flight

Two NEW AFRI CAPs Join the Community

SPARC led by University of Florida

- Partnering with Agrisoma and ARA
- Targeting alternative jet fuel and animal feed from the oilseed crop Brassica carinata (Carinata)

SBAR led by University of Arizona

- Partnering with Bridgestone America and Eastman Chemicals
- Targeting natural rubber, industrial chemicals, and alternative jet fuel from the dry land crops guayule (why-oo-ley) and guar.

United States National Institute Department of of Food www Agriculture and Agriculture @US

ute www.nifa.usda.gov re @USDA_NIFA

CAP Feedstocks and Project Regions

USDA NIFA CAP

CAAFI Webinar October 13, 2017

David Wright

Winter Oilseed Crops in the Southeast

Laying the foundation for SPARC

Field days, summits, outreach engaging multiple stakeholders for production and market updates

Identified issues for SPARC-CAP

- identifying early adopters across SE
- improving system fit
- minimizing risk across supply chain

Over 10,000 acres of carinata produced from 2014 onwards through farmer contracts

ARA uses carinata oil for DoN campaign-2014

> \$1.1m grant from to demonstrate feedstock development in FL -2013

First jet flies on CH process based drop-in fuel from carinata-2012

Crop improvement and region-specific BMPs

Carinata research plot trials initiated-2011-UF/Agrisoma/ARA

What is Carinata?

Mustard family (Brassicaceae)

Carinata Characteristics

Closely related to rapeseed Cold, heat, and drought tolerance High oil content Oil is high in erucic acid *Non-food oilseed crop* High protein seed meal

http://en.wikipedia.org/wiki/Triangle_of_U

Oilseed Crops for Bioenergy

B. carinata (Ethiopian mustard) is an excellent non-food oilseed crop for biofuels

*Carinata seed is high in oil and produces more oil/acre

	~ % Seed Oil
Peanut	50
Canola	43
Carinata	42-45
Soybean	18
Cotton	16
Corn	3

Carinata: The jet-fuel oilseed feedstock

- Brassica carinata is a jet-fuel feedstock
- Originated in Ethiopian highlands
- Cross between *B. nigra* and *B. oleracea*
- Heat and drought tolerant
- Disease and shattering resistant
- As a winter crop, carinata increases soil organic matter, reduce erosion, water and nutrient loss
- Carinata is planted in November and harvested in May in the US southeast
 - 10000 acres produced in the past 3 yrs
- Large seeded mustard (120000 seeds/lb)
- Seeds are 45% oil and 30% protein
- Oil is nonedible partly due to high erucic acid (35%) and glucosinolate content
- High protein, low fiber seed meal

3500 lb seed/acre

Cost of production: \$275/acre Profit: \$200-300/acre

Vegetative Stage Mid January Flowering Mid March

Mature Carinata Mid- Late May

Why Carinata?

Crop timing conducive for production and consistent feedstock supply

- Planted on fallowed underutilized lands
- Planted in fall and harvested in spring in the southeast
- Low water footprint
- Double cropped for increased farmer revenue-leaving May-October for summer crop

Southeast US Crop Acreage

	Florida	Georgia	Alabama	South Carolina
Crop Acres	9,250,000	10,150,000	9,033,000	4,900,000
Summer Production	Tomato, Vegetables	Cotton, Peanut, Corn Soy	Cotton, Soy, Peanut	Peanut, Cotton
Rotation/ Double Crop Options	Winter into vegetable crops (~1MM acres)	Winter rotations into Cotton, Peanut	Winter into Soy and Cotton	Winter into Peanut, Cotton

- Winter crop that fits in existing crop rotation scenarios with potential of 2 to 4 M acres of the 15 M acres in the 6 team states, enabling sustainable fuel and bioproducts production
- Has seen significant developments over the last 7 years that demonstrates this crop is on the verge of broad commercialization
- Has superior agronomic properties and oil and fuel characteristics; high value seed meal for feed and bioproducts (SE has a need for high protein meal)
- SPARC's strategic industry partnerships and efforts intended to move carinata to an FSRL 8, and integrated with a CHJ conversion to FRL 9 enabling commercialization initiation at significant scale (FSRL scale 1-9 with 1 being ID of feedstock, etc. and 9 being commercialization)

Production Goals

3500 lb seed/acre 200 gal oil/acre \$200-300 profit/acre

What's in a bag of carinata seed?

Seed sold to farmers in 50 lb bags to plant 10 acres.

One bag of seed can produce 18 tons of seed. 18 tons of seed produces 2000 gallons of jet fuel which can fly most fully loaded regional jets for 9 hours of flight, from North Florida to California and back. The amount of feed (meal) can produce 3600 pounds of beef or 6200 pounds of poultry.

SPARC Teams and Objectives

Established Carinata Value Chain

Biofuels ISOCONVERSION Process (BIC)

Converts fats, oils, and greases from plants, animals, or algae into "drop-in" renewable fuels

ARA's Oil Conversion and Co-products

SPARC

Ongoing Activities....

Advancing carinata genetics

Value of variety or genotype testing –each evaluated for maturity, cold tolerance, yield and oil content and quality

Carinata Best Management Practices

Carinata Best Management Practices

Tillage

Planting date

Extension Efforts

Regional Production Meetings

0114

Research & Production Summits

Plot Tours

Farm Field Days/Tours

Research translated to initiation of commercialization

Partnering with John Deere on combine setup

First shipment of carinata loaded at Cargill's port facility in Tampa from SE production

Carinata Feedstock Readiness Level (FSRL, Scale 1 – 9)*

Categories	Current Status	Through SPARC
Production	3.2	8
Linkage to Conversion	6.2	9
Market	4.2	8
Policy	1.5	4.2

* From concept (1) to full commercialization (9)

SPARC Vision for Commercial Deployment

Demonstrate capacity

- Refine feedstock production and expansion for maximum productivity
- Develop risk mitigation and optimization tools to support scaling
- Establish communities of practice and stakeholder consortia spurring sustained interest and investment

Increase Demand

- Provide renewable fuel and co-product samples to multiple endusers
- Demonstrate value of meal based coproducts
- Demonstrate value along entire supply chain

Ramp up capacity

- Policy informed by scientific process and stakeholder engagement
- Scale SE US carinata production
- Drive infrastructure establishment to support carinata enterprise

Build resilient supply chain

- Develop comprehensive support systemfrom producer to end user
- Ensure economic value and low risk across supply chain through robust supply chain modeling
- Build workforce to sustain carinata supply chain

SPARC-Challenges

- Maximizing yields within the SE US- commercialization and sustainability closely linked to yields
- Scaling up adoption-several barriers exist (rotational fit, markets, production know-how etc.)
- Limited regional infrastructure- adoption will justify infrastructure development (excellent

commercial involvement)

• Policy around carinata incentives still to evolve-very early stages

SPARC Thank you!

CAAFI Webinar, October 13, 2017

SBAR

Sustainable Bioeconomy for Arid Regions

Kimberly Ogden University of Arizona

CAAFI Presentation 10/13/17

Funded by the AFRI CAP Program

United StatesNational InstituteDepartment ofof Food andAgricultureAgriculture

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Impacts

Center of Excellence

- Add value to the bioeconomy for rural, arid regions through production of rubber, fuel, guar gum, and high value products
- Long term sustainability of water usage in Southwest through cultivation of drought resistant crops
- Increase student diversity in STEM fields

SBAR Presentation Outline

- Background to SW and the feedstocks
- Feedstock Development
- Sustainable Feedstock Production
- Feedstock Logistics
- Extension, Education and Outreach

	Guayule	Guar
Estimated Available, Suitable Land in Region (ha)	110,000 ha (5 years in AZ)	240,000

3 million ha in SW US (Long term)

\$\$\$\$

Pharmaceutical (100s billion)

Resin 285,000 MT/yr

Feedstock:	Guayule				Region: AZ/SW US
FSRL Scoring Summary	Production	Market	Policy	Rubber Conversion	Linkage to Conversion
Current Status	6.2	5.3	4.2	4.3	4.3
Anticipated Status	7	6.2	5.4	7	6

Feedstock:	Guar				Region: AZ/SW US
FSRL Scoring Summary	Production	Market	Policy	Guar Gum Conversion	Linkage to Conversion
Current Status	2.3	2.2	4.2	5.1	1
Anticipated Status	4.1	4.1	5.4	7	4.1

Objectives

- 1.1 Shrub biomass Improvement
- 1.2 High-throughput phenotyping
- 1.3 Superior genotypes of guayule and guar for regional growers

Expected Outcomes

Improved shrub biomass.

Better understanding of the reproduction for guayule accessions.

Deployment of guayule and guar genotypes to growers.

Optimum planting dates for guar.

Selection tools developed.

Better understanding flowering control in guayule.

Guayule grown under center pivot

Guar Field

Objectives

2.1 Agronomics: nutrients, salinity, herbicides, irrigation

2.2 Soil quality and health – sustainability

2.3 Identify Economic co-products

Drip Irrigated Guayule

Expected Outcomes

Web app: irrigation, fertilizer, salinity, and pest management

Herbicide SLN registrations for DS guayule

Understanding of microbial community populations that support optimal production

Guayule & Guar Best Management Practices

Yield increases in guayule and guar

Identify natural products – commercialization

Drip tape installation

Objectives

3.1 Understand timing effects on quality

3.2 Optimize shipping and handling

3.3 Demonstrate bagasse to fuel

Guayule bales ready for transport for processing

Feedstock Logistics

- Model shipping and handling system
 - Mixed integer optimization
 - Decomposition-based algorithms
- Compare to existing models
 - Volpe's Biofuel Transportation Analysis Tool
 - ORNL's feedstock data and visualization tools
- Optimize harvest, collection levels, storage, and transportation routes

Guayule Harvest

Feedstock Logistics

> Technology Readiness of Conversion Partners

Feedstock Logistics

141

Process	Fast Pyrolysis	Hydrothermal Liquefaction	REACH [®]
Initial TRL	5	5	4
Final TRL	6	6	5

Modular Hydrothermal Liquefaction System at PNNL

Fast Pyrolysis PDU at Iowa State University

Expected Outcomes

Feedstock chemical profiles by time and handling

Transportation model optimized for guar and guayule

Feedstocks linked to conversion technologies

Data to sustainability model

Hydrothermal Liquefaction PDU at NMSU

Connecting Research and Extension

Expected Outcomes

Coupling of Sustainability, Experimental, Extension

Web-delivered analysis tool

Socio-economic Impact

Overview

Extension, Education and Outreach

Objectives

- **5.1 Produce Extension materials**
- 5.2 Show-and-tell for growers
- 5.3 Train the trainers
- 5.4 Develop bioeconomy K-12 modules
- 5.5 Involve youth through 4-H and camps.

Impacts

Center of Excellence

- Add value to the bioeconomy for rural, arid regions through production of rubber, fuel, guar gum, and high value products
- Long term sustainability of water usage in Southwest through cultivation of drought resistant crops
- Increase student diversity in STEM fields

