FAA Alternative Jet Fuels R&D and ASCENT Project 01

Presented to:

SOAP-Jet Webinar

Nate Brown

Date:

By:

Feb 23, 2018

Where do we stand?

- Commercial flights on SAJF are expanding
- 1.5 million gallons in 2017 from two commercial producers, many commercial user, multiple U.S. airports

Notes:

1. Includes procurements of fuel by U.S. government, U.S. airlines, manufacturers, and foreign carriers delivered to U.S. airports

2

2

FAA Alternative Jet Fuel R&D Investments

• Testing

- Support certification testing
- Improve certification process
- Emissions measurements

Coordination

- Public-Private
- Interagency
- State & Regional
- International

• Analysis

- Environmental sustainability
- Techno-economic analysis
- Future scenarios

Analysis: ASCENT 01 Alternative Jet Fuel Supply Chain Project

- Examine barriers to alternative jet fuel production via the full range of pathways being considered for ASTM approval
- WSU, MIT, Purdue, UT Knoxville (UTK), U. of Hawaii, PSU considering the entire supply chain through multiple lenses:
 - Feedstock production
 - Techno-economics of pathways
 - Existing infrastructure
 - Transportation routes and capacity
 - Community assets
- Quantify economic, environmental, and societal opportunities and challenges & identify opportunities for win-win-wins
- Working with CAAFI and USDA

 Links to U.S. DOT Volpe National Transportation Systems Center, DOE Argonne National Lab & National Renewable Energy Lab (NREL)

Analysis: ASCENT Project 01 Priorities 2017/18

- **1. International Civil Aviation Organization (ICAO) Alternative Fuels Task Force Support**
- 2. Production Analyses
- 3. Economic Viability Analyses
- 4. Lipid-focused (oil based) Analyses

5. Regional Tactical Deployment Projects

- Collaborative projects leverage strengths across A01 team
- Achieve supply chain development and move toward commercial production
- Initial projects:
 - Inland Pacific Northwest lipid-based alternative jet fuel
 - Hawaii C&D waste-based alternative jet fuel
 - Southeastern U.S. lipid- and biomass-based alternative jet fuel

ASCENT P1 Regional Approach

Project Groundwork (G)	Regional Deployment Project (D)
G1 - Analysis of feedstock-conversion	D1 - Develop detailed supply chain scenarios
pathway efficiency, product slate (including	(feedstock, products/co-products,
co-products), maturation	infrastructure, logistics, conversion method)
	for analysis/deployment
G2 - Scoping of Techno Economic Analysis	D2- Stochastic TEA of pathway
(TEA) issues	
G3 -Screening level GHG Life Cycle Analysis	D3- Evaluate sustainability and GHG LCA
(LCA)	
G4 - Identification of supply chain	D4 -Farmer revenue, rural development,
participants/partners	economics
G5- Develop appropriate stakeholder	D5 - Evaluate social capital/acceptability
engagement plan	
G6 - Identify and engage stakeholders	D6 - Evaluate environmental services revenue
	options
G7 - Acquire transportation network and	D7 - Evaluate potential economic benefit of
other regional data for Freight and fuel	project
Transportation Optimization Tool (FTOT) and	
other modeling	
G8 - Evaluate infrastructure availability	D8- Supply chain risk assessment for
	business adoption
G9 - Evaluate feedstock availability	D9 - Incorporate regional data into FTOT for
	geospatial analysis
G10 - Develop specific regional proposal	

FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

Hawaii Regional Project Island of Oahu

Alternative Jet Fuel Supply Chain Tropical Region Analysis

Project 001 Project manager: Nathan Brown, FAA Lead investigator: Scott Turn, Hawaii Natural Energy Institute, University of Hawaii

February 23, 2018 SOAP-JET Webinar

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

Jet Fuel Use in Hawaii, 2015 Commercial Airports and Military (million gallons)

Total Use in 2015 -- 679 M Gallons

Value Chain for AJF Production

Agriculture ---- Industry ---- Investors ---- Government ---- Community

Tropical Bioresources and Pathways to AJF

- PVT is the only construction & demolition landfill on Oahu
- Current intake 1,775 tons C&D waste per day
- ~50% of intake converted to feedstock, up to 900 tpd
- Waste-in-place also "mined" for additional "feedstock"
- Feedstock: wood, plastic, cloth, paper, and other organics
- Recycling system to generate feedstock was dedicated in 2014, currently processing and stockpiling material
- Tipping fee \$50 per ton, or \$54 per ton for LEED certified

PVT Feedstock Processing Facility

PVT Site Characteristics

PVT Feedstock Characterization

- Characterization of feedstock properties needed to inform conversion process design
 - Ultimate analysis for major elements: C, H, O, N, S
 - Proximate analysis: volatile matter, fixed carbon and ash
 - Major ash species: K, Cl, Na, P, Mg, Si, Fe, Ti, Al, and Ca
 - Minor ash species: Mn, Fe, Cu, Zn, Rb, and Sr
 - Moisture content
 - Energy content or heating value
- Characterization of feedstock properties needed for logistics particle size of materials, bulk densities, etc.
- Time series data to assess variability in supply

Value Chain for AJF Production

Possible Locations of Value Chain Participants

PVT Land Company

Hawaii Petroleum Supply Schematic

* Currently Par Hawaii and Island Energy refineries

Source: Hawaii Refinery Task Force Report, 2013

Questions?

FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

Alternative Jet Fuel Supply Chain Analysis ASCENT 1

Regional Supply Chain Approaches

Development of a Supply Chain for the Production Jet Fuel from Oilseeds Grown in the Pacific Northwest

> Project Manager: Nathan Brown, FAA Lead Investigators: M. Wolcott, K. Brandt, N. Martinkus Graduate Student: Dane Camenzind, WSU

> > [January 22, 2018]

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

SIMPLE SUPPLY CHAIN MODEL

COMPLEX SUPPLY CHAIN MODEL

INLAND PACIFC NORTHWEST

CROPPING SYSTEMS

- Focus on dryland systems
- Decisions often based on moisture availability
 - Summer fallow is common in drier areas
- Brassicas are viewed as secondary crops with benefits for soil health and grass weed control

COMMON CROPS

SMALL GRAINS

- Winter Wheat
- Spring Wheat
- Barley

PULSES

- Peas
- Lentils
- Garbanzo Beans

BRASSICA OILSEEDS

- Canola/Rapeseed
- Mustard
- Camelina
- Carinata

AGROECOLOGICAL CLASSES

AGROECOLOGICAL CLASSES

GRAIN FALLOW

• >40% fallow

Rotations:

- WW-F
- WW-F-WC-F

TRANSITION

• 10-40% fallow

Rotations:

- WW-SW-F
- WC-SW-F
- WW-SC-F

ANNUAL CROP

• <10% fallow

Rotations

- WW-SW-Pulse
- WW-Pulse
- WW-SW-SC

CROP YIELDS

Figure 15. Spring canola yields obtained using historic weather data.

GRID INPUTS

- 2016 USDA Cropland Data Layer (CDL)
- Canola

Production

Canola

GRID INPUTS

- 2016 USDA Cropland Data Layer (CDL)
- Canola
- 25 km grid (96 cells)

OILSEED STORAGE

- Long-term storage
- Country elevators are typically built along rail
- Country elevators have an average "catchment radius" of 10-30 miles

EXISTING TERMINALS

DAIRY & CATTLE

HEFA REFINERIES

- Often converted from or co-located next to existing petroleum refineries
- Conversion process requires hydrogen
 - Often produced from natural gas
- Produces green diesel and naphtha in addition to green jet fuel

PETROLEUM INFRASTRUCTURE

PRELIMINARY MODEL RUN

QUESTIONS

FERDINAND, ID – June 3