

ASCENT 101: SAF Repository

Joshua Heyne, Ph.D.

Director, Bioproducts, Sciences, and Engineering Laboratory
Co-director, WSU-PNNL Bioproducts Institute
Battelle Distinguished Professor
Associate Professor, Mechanical Engineering
Affiliate Faculty, Biological Systems Engineering
Scientist, PNNL (Joint Appointment)
Quad-chair, CAAFI R&D Committee

CAAFI Webinar 30 Jan. 2024

Turning today's waste into tomorrow's carbon resource

National Distinctions:

Fuller awarded Secretary's Honor Award

Wolcott only academic author of SAF GC Road Map

to WSU to PI

Joshua Heyne (WSU)

Corinne Fuller (PNNL)

Shared Space:

Centroid of Bio-In, space split 53/47 PNNL/WSU Bioproducts, Sciences, and Engineering Laboratory (BSEL), WSU Tri-Cities

Joint Graduate Study

Opportunities:

17 Distinguished Research Graduate Program Fellows since 2018, Tutored 11 Post-Docs and Students

Joint Projects:

Wet wastes

Biocrude

Sustainable aviation fuel

Hydrothermal liquefaction Upgrading

>\$33 million in new projects >83 research publications

What is SAF as a material?

There are many properties and pathways

FT-SPK sbc \longrightarrow \longrightarrow HEFA-SPK sbc \longrightarrow \longrightarrow HFS-SIP sbc \longrightarrow

Physical, compositional, and kinetic properties

Feedstocks and conversion processes can generate different properties.

ATJ-SPK sbc

FT-SKA sbc

(depends on the producer)

CHJ sbc

Identical to Jet A/A-1 (?) (fleetwide compatible, drop-in)

Like Jet A/A-1 (limited fleet compatible, non-drop-in)

Not-like Jet A/A-1 (not acceptable as a stand-alone jet fuel)

SAF testing the repository could impact

1. Tool and product development

- ASCENT 25 and 65: Low volume testing and prescreening
- Developing next generation fuel systems.
 - Capacitance gauging, pumps, nozzles, etc.

2. Pathway development

- Novel SAF producers/non-ASTM D7566 pathways
- What are the shortfalls of various pathways for commercialization/ASTM qualification?

3. Specification broadening or fuel research

Does the type of nitrogen in the fuel from HTL matter for thermal stability?

4. ASTM D4054 Qualification Testing

Major Repository Components

Storage and distribution:

Level 1:

- Broad distribution with the ability to support full scale aircraft testing
- 2-3 batches

Level 2:

- Rig testing across OEMs, research labs, and qualification
- 5-10 batches

Level 3:

- Posterity for development of new technologies and investigation of anomalous observations
- Approx. 100 batches

Blending

 Multiple materials could be blended for designing unique compositions for testing

Distillation

500 gallon batch distillation

Key components of Repository Stockholders

Producers:

1. Novel SAF Producers non-ASTM D7566 compliant

2. Commercial SAF ProducersASTM D7566 compliant

Project execution:

- 1. Management (IP, procurement, etc.)
- 2. Physical location for:
- Storage
- Blending
- Distribution
- 3. Testing and characterization
- 4. Distribution of data and reference information

User community:

- 1. OEMs
- 2. Research institutions
- Academic
 - ASCENT universities
- National Labs

3. SAF producers

Background

Paine Field- Physical location

• Owned by **Snohomish Co.**, which is the county just north of Seattle.

 Commercial service by Alaska Airlines and Kenmore Air

- Active General Aviation ecosystem (>500 aircraft)
- Boeing 737 MAX, 767, KC-46, 787 and 777s built at and take their first flights from Paine Field
- Major hub for aircraft servicing and aviation companies
- Former military base
- 3 museums relating to flight:
 - Boeing Future of Flight
 - Flying Heritage and Armored Combat
 - Museum of Flight Restoration Center

Current proposed siting

Paine Field

Temporary site location:

Planned operations in June 2024

Permanent site location:

Approximately 8 acres are currently scoped for usage.

Additional sites are potentially available.

SAF Repository

Receive SAF samples from around the world

SAF Repository

Fuels are:

1. Procured and Received

Indexed

Characterized & Databased

Stored

5. Distributed

SAF Repository

Send SAF samples around the world

Testing and characterization CY24- all Fast Track tests

Thanks to the Murdock
Charitable Trust and an airline,
we have the support to complete
all Fast Track capabilities in CY24.

In use or ordered:

- Micro-distillation/optimization (BR Instruments)
- GCxGC-VUV/FID
- Density and viscosity (-55 °C)
- HHV and proton NMR (D4809)
- JFTOT with ellipsometer
- Dielectric constant (with chiller)
- Swell testing
- Flash Point
- Freeze Point
- Total sulfur
- Distillation (D86 and D2887)

- Vapor pressure
- Differential Scanning Calorimeter (-90 to 500 °C)
- Surface Tension (-20+ °C)
- FAME (GC-MS)
- Aromatics, olefins, and saturates (ASTM D1319)
- Particulates

- Dissolved water
- Acidity
- Conductivity
- BOCLE/lubricity
- Existing gums
- Copper corrosion

Novel SAF qualification process

- 1. Prescreen composition/properties and refine candidate process (milliliters of material)
- **Engage a select number of ASTM committee members** (and CAAFI) with:
 - Initial data
 - Commercialization plan
 - Pathway description
- Establish an ASTM Task Force on the candidate pathway
- Prescreen batch(es) for ASTM consideration (liters)

- Submit approx. 200-300 liters of candidate material and a more detailed commercialization plan to FAA D4054 Clearinghouse
 - Multiple batches may be required; batches can sum to 200-300 liters
- Work with **FAA**, **OEMs**, and **Clearinghouse** to complete research reports and potentially produce more fuel

SAF Prescreening

ASCENT 65a (PM: Ana G.)
 ana.b.gabrielian@faa.gov

Experience:

- >220 unique SAF samples
- 3 dozen institutions across North America and Europe
- A dozen different pathways

Cost:

>\$2k/sample

Timelines:

- MTA and NDAs allow at least 6 weeks
- 1 to 2 weeks after the sample is received

Tests	Vol, mL
Hydrocarbon type analysis (GCxGC), distillation curve, LHV, viscosity, density flash point, freeze point, surface tension, nitrile rubber swelling, smoke point/TSI	30*
JFTOT and DCN	+800

*finished material, does not include yield losses if distilled at the lab.

Distillation cut points are important for properties and yields

The viscosity is nearly off-spec for the orange cut.

36% more SAF is yielded with better properties

Currently exploring the potential of getting a larger scale distillation column for ASTM qualification and fuel research.

Repository timeline and next steps

- Initial operations upon receipt of funding from FAA
- Temporary site:
 - June 2024
- Permanent facility:
 - >2 years out

- We are looking for more partners.
- Interested in contributing or receiving materials?
 - Email: <u>randall.boehm@wsu.edu</u> and <u>joshua.heyne@wsu.edu</u>
 - Put 'SAF Repository' in the subject line.

Thank you & Questions

