

The Future of SAF Panel: feedstocks, conversion, and innovation beyond 2030

CAAFI June 2022

Andreea Moyes

Air bp's global aviation sustainability director

bp's ambitions in the energy transition

Strategic progress - sustainability

Sustainability – we are accelerating our net zero ambition in line with the progression of our strategy

			Scope	2025	2030 aims	2050 or sooner aims
Aim 1	Net zero	operations*1	1+2	20%	50%	100%
Aim 2	Net zero	production*1	Scope 3	20%	35-40%	100%
Aim 3	Net zero	sales*1	Lifecycle intensity (including end-use emissions)	5%	15-20%	100%
Aim 4	Reducing	Methane	Methane intensity	0.20% (measurement approach)		

Source: bp financial results update for 2021

Total final energy consumption decarbonizes as fossil fuels are replaced by electricity and hydrogen

Source: bp Energy Outlook 2022

A net zero refinery*

Integrated Energy Hub Example – many projects that require capital, multiple possible sources of value

Source: bp project ideation

Sustainable and available feedstock in 2050 defines the maximum supply of SAF (global view)

There are several SAF technology pathways HEFA and ATJ require lower CAPEX because they use/convert existing assets All pathways produce SAF that is more expensive than conventional jet

		0			
	HEFA (waste oil)*	1G Ethanol to jet	2nd Generation Biomass***	FT (MSW)	eFuel****
Time to market & current scale	2020s Currently commercial.	2025-2035 1G ethanol is mature. Dehydration to ethylene commercial. Ethylene to jet not yet commercial.	2030-2035 Pyrolysis commercial demo. Pyrolysis oil to jet not yet commercial.	2021-2030 Commercial demo.	2030-2040 rWGS not yet commercial. FT demonstrated. Electrolysis is commercial.
Key opportunities	Fungible feedstock, scaleable technology Back-integration to refineries. Capital Lite.	Lower capital intensity Attractive in areas with existing ethanol capacity (US/Brazil)	Significant feedstock availability long-term low-cost potential	Negative cost feedstock FT technology integrates to eFuels	Progress at pace of renewables societal preference Highest sustainability credentials
Near term constraints	Competition with renewable diesel (HVO) for a highly limited feedstock	Opportunity cost to sell ethanol for road transport is high	Costs and technology readiness Investment risk	Investment risk	Costs and technology readiness Improvements required in multiple areas of technology
Long term constraints	Feedstock supply is limited to <1-5% jet demand unless oilseed energy crops emerge post 2035.	Opportunity cost to sell as chemicals may be high sustainability concerns	Build rates biomass aggregation	High capital intensity MSW access GHG reduction is dependent on waste alternative use, and can be significantly improved through inclusion of CCS	Capital costs build rates for eFuel and power/H ₂
Estimated GHG reduction vs. fossil jet	65-79%	60-70% sugarcane; 20-30% corn	76-94%	70-100%**	100%
Key take away	HEFA is a near term option that uses fungible feedstock and back-integrates to refineries.	First generation ATJ is capital lite and produces SAF from existing ethanol markets.	Second generation biomass technologies have long term, low cost potential.	FT MSW provides near- mid term potential in urban areas with tipping fees for waste.	eFuels potential is increasing due to the pace of renewables and green H ₂ .

^{*1}G food crop vegetable oils could also be used as a feedstock for HEFA

^{**}assumes avoided landfill emissions are counted as part of analysis; landfill practice changes pose a risk to this accounting

^{***}multiple other technology routes from 2nd generation biomass to SAF should also be considered including alternate catalytic/fermentative conversions, LC ethanol to jet, etc.

^{****}alternate routes to eFuels also exist including a route through methanol and others at R&D stage

What do we need to scale SAF investment in US?

Federal (and state) programs are needed to create a wide and sustainable base for demand:

- Mandates provide regulatory certainty which is needed for significant investments
- Incentives to close the gap to conventional (at least in transition)
- Recognize and address the gap with ground fuels economics

Multiple feedstocks and SAF technologies to achieve the industry goals

- All feedstocks and pathways are needed if they meet sustainability criteria
- Co- processing could help deliver SAF economically at refineries that can use this process and have access to feedstocks
- Mass balancing, book and claim, with robust assurance programs

Risk sharing with other industry stakeholders:

- Capex (especially for high capex pathways; ex: grants, co-investment, CFD)
- Feedstock
- Regulatory

Integrated projects can bring optionality, multiple sources of value and risk mitigation

Thank you!

andreea.moyes@bp.com

