www.core-jetfuel.eu



#### Promising production technologies and value chains Panel-II Introductory Presentation, CORE-JetFuel (EU)

A. Sizmann<sup>1</sup>, A. Quignard<sup>2</sup>, A. Roth<sup>1</sup>, C. Jessberger<sup>1</sup>

**CAAFI – CORE-JetFuel Cooperation Workshop** Alexandria, April 28th 2016

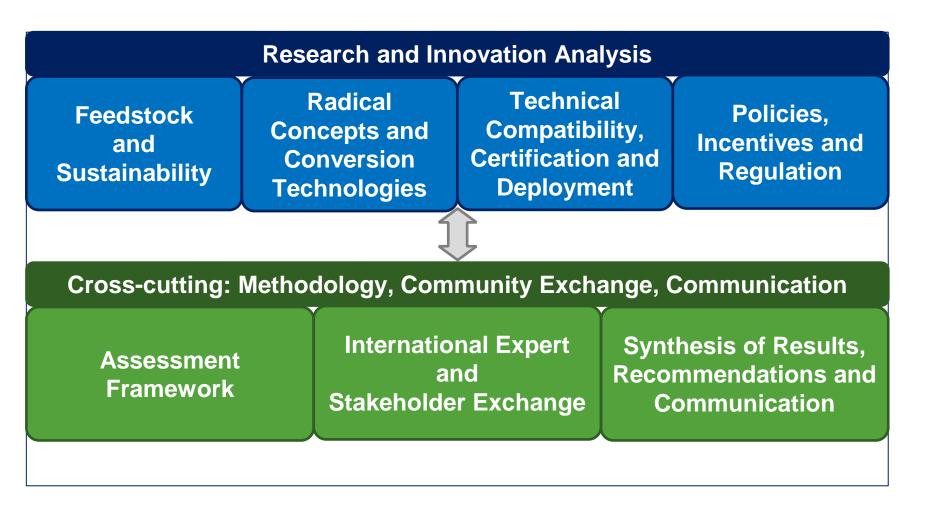
#### <sup>1</sup> Bauhaus Luftfahrt <sup>2</sup> IFP Energies Nouvelles



This project has received funding from the European Union's Seventh Programme for research technological development and demonstration under grant agreement No 605716



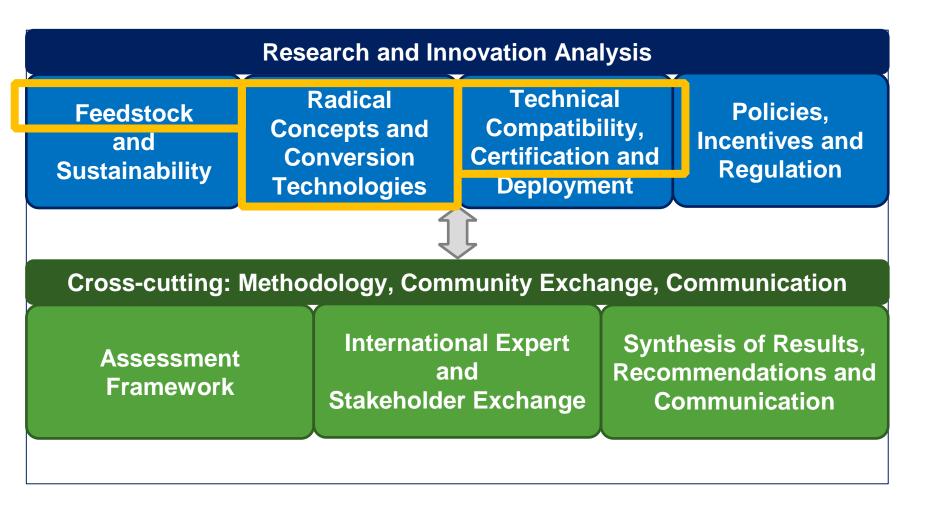
GROUP











### The CORE-JetFuel Approach





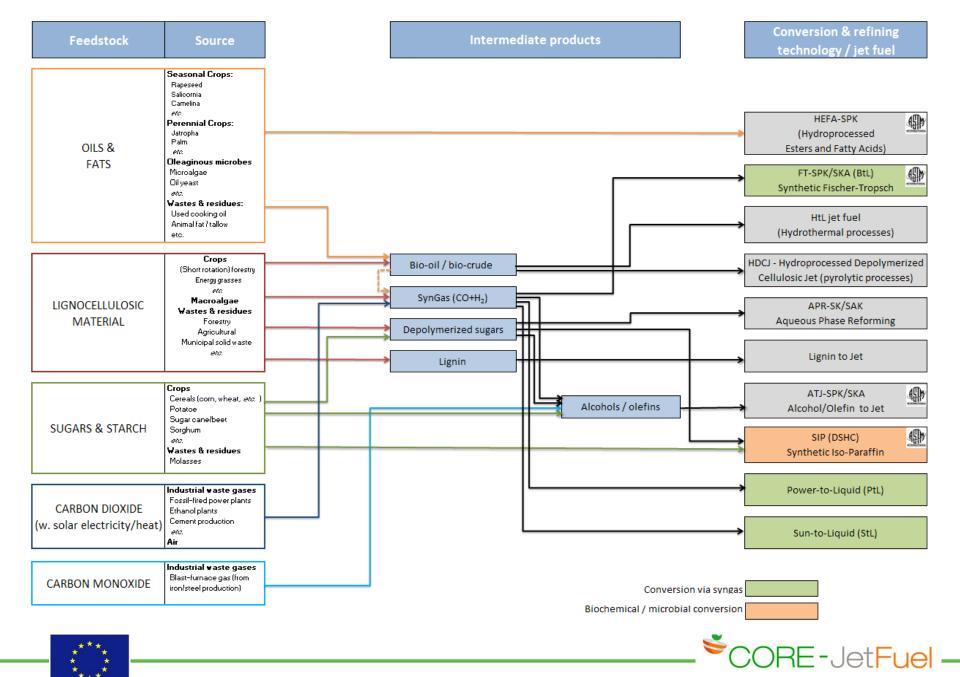


### The CORE-JetFuel Approach – Focus of Panel II








### **Technical Compatibility and Certification**

#### 5 pathways already certified in D7566-16 (April 2016)

- FT-SPK certified in 2009 (annex A1)
- HEFA-SPK certified in 2011 (annex A2)
- DSHC (Direct-Sugar-to-HydroCarbon), renamed SIP (Synthetic Iso-Paraffins from Hydroprocessed Fermented Sugars in June 2014 (annex A3)
- (FT-)SPK/A = FT-SPK + added mono-aromatics from alkylation of a benzene-rich cut (naphtha type) with light olefins from FT origin in Nov. 2015 (annex A4)
- ATJ-SPK through isobutanol + dehydratation/oligomerization to iC12/iC16 in April 2016 (annex A5)







### **Objectives of Research Analysis**

- Technology assessment: identification of promising "clusters"
  - State of the art and potentials w.r.t.
    - environmental,
    - economic and
    - technical

performance parameters

- Portfolio assessment: mapping of R&D landscape
  - Impact and balance of R&D portfolio at European level





# Comparison of options: Technology assessment

- Relevant questions
  - How much can we make?
  - What is the potential environmental impact?
  - How much would it cost?
  - Drop-in capable or not?
  - What is the current state of development (maturity)?
- The assessment of alternative fuel technologies requires a multiple-criteria approach



Criteria selection and definition of metrics (performance indicators)

| Criterion                         | Metric                                                        |                            |
|-----------------------------------|---------------------------------------------------------------|----------------------------|
| Technical maturity                | Technology Readiness Level                                    | TRL (1-9)                  |
| Feedstock production<br>maturity  | Feedstock Readiness Level                                     | FSRL (1-9)                 |
| Conversion technology<br>maturity | Conversion Technology<br>Readiness Level                      | CTRL (1-9)                 |
| Technical compatibility           | Maximum blending ratio                                        | r <sub>Blend,Max</sub> [%] |
| Economic competitiveness          | WtT production costs relative to spot price in 2013           | γ [%]                      |
| Global substitution potential     | Production potential relative to demand in 2050               | $\sigma$ [%]               |
| Impact on local biodiversity      | Negative impact:                                              | Yes/No                     |
| GHG reduction potential           | Specific lifecycle GHG emissions relative to conventional jet | E [%]                      |



#### Definition of metrics

| Criterion                         | Metric                                                        |                            |
|-----------------------------------|---------------------------------------------------------------|----------------------------|
| Technical maturity                | Technology Readiness Level                                    | TRL (1-9)                  |
| Feedstock production maturity     | Feedstock Readiness Level                                     | FSRL (1-9)                 |
| Conversion technology<br>maturity | Conversion Technology<br>Readiness Level                      | CTRL (1-9)                 |
| Technical compatibility           | Maximum blending ratio                                        | r <sub>Blend,Max</sub> [%] |
| Economic competitiveness          | WtT production costs relative to spot price in 2013           | γ [%]                      |
| Global substitution potential     | Production potential relative to demand in 2050               | $\sigma$ [%]               |
| Impact on local biodiversity      | Negative impact:                                              | Yes/No                     |
| GHG reduction potential           | Specific lifecycle GHG emissions relative to conventional jet | £ [%]                      |

> Technical maturity

TRL = Min[FSRL, CTRL]





#### Definition of metrics

| Criterion                         | Metric                                                        |                            |  |
|-----------------------------------|---------------------------------------------------------------|----------------------------|--|
| Technical maturity                | Technology Readiness Level                                    | TRL (1-9)                  |  |
| Feedstock production maturity     | Feedstock Readiness Level                                     | FSRL (1-9)                 |  |
| Conversion technology<br>maturity | Conversion Technology<br>Readiness Level                      | CTRL (1-9)                 |  |
| Technical compatibility           | Maximum blending ratio                                        | r <sub>Blend,Max</sub> [%] |  |
| Economic competitiveness          | WtT production costs relative to spot price in 2013           | γ [%]                      |  |
| Global substitution potential     | Production potential relative to demand in 2050               | $\sigma$ [%]               |  |
| Impact on local biodiversity      | Negative impact:                                              | Yes/No                     |  |
| GHG reduction potential           | Specific lifecycle GHG emissions relative to conventional jet | E [%]                      |  |

Solution So



#### Definition of metrics

| Criterion                         | Metric                                                        |                            |
|-----------------------------------|---------------------------------------------------------------|----------------------------|
| Technical maturity                | Technology Readiness Level                                    | TRL (1-9)                  |
| Feedstock production maturity     | Feedstock Readiness Level                                     | FSRL (1-9)                 |
| Conversion technology<br>maturity | Conversion Technology<br>Readiness Level                      | CTRL (1-9)                 |
| Technical compatibility           | Maximum blending ratio                                        | r <sub>Blend,Max</sub> [%] |
| Economic competitiveness          | WtT production costs relative to spot price in 2013           | γ [%]                      |
| Global substitution potential     | Production potential relative to demand in 2050               | $\sigma$ [%]               |
| Impact on local biodiversity      | Negative impact:                                              | Yes/No                     |
| GHG reduction potential           | Specific lifecycle GHG emissions relative to conventional jet | E [%]                      |

> GHG reduction potential GHG emission reduction potential of the unblended fuel rel. to conv. jet  $\varepsilon(\text{Fuel}) = \frac{\text{CI}(\text{Fuel}) - \text{CI}_{\text{Ref}}}{\text{CI}_{\text{Ref}}}$ CI: equivalent carbon intensity of fuel CI<sub>Ref</sub>: equiv. carbon intensity of conv. jet





### **Evaluation**

Evaluation of a typical risk-reward relation



Ph.S. Roussel, K.N. Saad, and T.J. Erickson, "Third Generation R&D", Harvard Business School Press, Boston, MA, USA, 1991.

HighModerateLowRisk in technology development



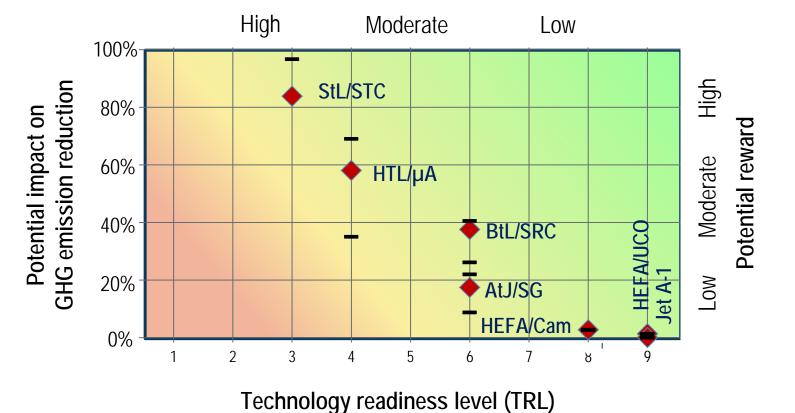
RE-JetFuel

### **Evaluation**

"TRL"

is related (but not identical!) to a risk metric

- "Potential impact on global GHG emission reduction" is an environmental reward metric
  - Calculate → the absolute annual carbon savings of alternative fuel
  - and compare it to → the absolute annual carbon emission of conventional jet fuel


| Absolute annual carbon savings     | $=\frac{\dot{M}_{Fuel}(Cl_{Ref}-Cl_{Fuel})}{\dot{H}_{Fuel}}=\sigma\cdot(-\varepsilon)\leq 1$ |  |
|------------------------------------|----------------------------------------------------------------------------------------------|--|
| Absolute annual reference emission | $\dot{M}_{\text{Ref}} \text{Cl}_{\text{Ref}} = 0^{-1} (-\varepsilon) \leq 1$                 |  |

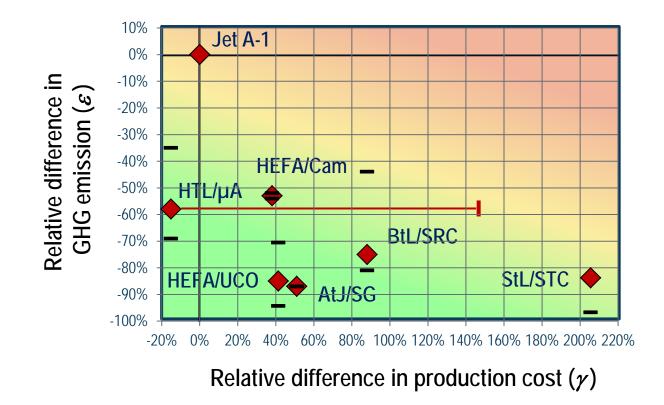
• Result: the product of global substitution potential  $\sigma$  and specific emission reduction  $\varepsilon$ 



### Evaluation – related to risk and reward

• Outline of first results:




Risk in technology development



CORE-JetFue

### Evaluation – related to cost & performance

• Outline of first results:





### **Preliminary conclusions**

- Short-term application (2020)
  - Availability limited by maturity of conversion technology
  - HEFA from oils/fats, SIP from sugar
- Medium-term application (2035)
  - Maturing of pathways based on lignocellulosic feedstock (high "potential reward": carbon footprint/production potential)
  - Development of renewable non-biogenic options proceeds
- Long-term application (2050)
  - Large quantities needed with high "potential reward"
  - Feedstock availability and specific environmental performance increasingly important
  - (High risk)/high gain options



### **Questions for discussion**

- 1. Renewable energy and feedstock potentials
  - Which fundamental bottelnecks and opportunities do you see for the development of a scalable long-term supply?
  - Which types of renewable feedstock/energy (algae, residues/waste, energy crops, lignocellulosics, sugre/starch, electricity, etc.) offer the highest potentials in North America, Europe or Southeast Asia?
- 2. Conversion technologies
  - Which conversion technologies should be primarily supported in their development towards industrial maturity? Why?

#### 3. Research and innovation roadmap

- Which priorities should be set today in an R&I strategy for renewable fuel production pathways for short, medium and long-term applications (2020/2035/2050)?
- 4. Technical certification
  - How can the approval procedure be accelerated and made less costly?

