www.core-jetfuel.eu

Discussion Panel I: Supply Chain Development and Deployment of Alternative Fuels

This project is funded by the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement N° 605716)- THEME [ATT.2013.7-2]

1. Background The 2020 European Energy strategy:

- \downarrow GHG by 20%
- \uparrow share of renewable energy 20%
- Energy savings of 20%

To achieve these objectives **EU Advanced Biofuels Flightpath** sets up the objective to achieve **2 million tons of sustainable biofuel per year in 2020**.

A key point is to promote and create an efficient supply chain, from OFFER - biomass cultivation and conversion- up to DEMAND (airlines and standards).

Several projects will work in this supply, one project, ITAKA, will link supply and demand by connecting the full value-chain: feedstock grower, biofuel producer, distributor and airlines.

1. Background

Core-JetFuel is a CSA aiming at:

 Acting as a contact point between all stakeholders to give recommendations to the Commission.

Its a collaborative project framed in the implementation of **GLOBAL**, **EU** and **NATIONAL** policies:

2009: 1st International Conference on Aviation Biofuels held by ICAO

2011: The EC presents the EU Advanced Biofuels Flightpath

2011: Solar-Jet Starts

2012: ITAKA starts

2013: Core-JetFuel and Forum-AE Start

2014: Biofefly Starts

2015: BSFJ (Swedish Biofuels)

European Biofueis

TECHNOLOGY PLA

2. Value Chain Development

- Flights:
- Lufthansa: 1189 flights Frankfurt-Hamburg July-December 2011
- Air France: weekly flight from Toulouse to Paris-Orly with 10% farnesane during 1 year starting in 2014
- KLM: May 2014 Series of 20 flights March 2016 Series of 80 flights
- Production (EU)
- Neste: by batches
 - Frankfurt-Hamburg (6 months) 1189 flights Lufthansa 800 tons,
 - Itaka (2012-2016, ~ 1000 tons)

Projected:

- Biorefly (2000 tons/year, 2nd gen.) BioChemtex
- BSFJ (4000 tons/year, Swedish Biofuels)

2. Value Chain Development

• Projects at EU level for Development of the Supply Chain

Solar Jet (2011-2015, biofuel forom a solar reactor)

ITAKA (2012-2015, production + flight)

Biorefly (2 000 t + flights)

Coordination Efforts

Coordination and Support Actions

Synthesize demo flights

CORE-JetFuel

- **OBJECTIVES**: Demonstrate the capability of the whole value chain.
- Feedstock: Focus on camelina plantations/UCO
- Conversion technology: Using an existing plant (Neste Oil's Porvoo Refinery)
- **Logistics and Large Scale Use**: addresses all downstream logistics (i.e. blending, transport, storage and airport supply operations) at large scale
- Engine and fuel systems testing: Flight-testing is being carried out and relevant datasets shall be collected for the final assessment
- **Sustainability Assessment:** ensure that at least 60% GHG savings are reached by means of a lifecycle assessment. The socio-economic effects of the biofuel production will be addressed.

Linked to national initiatives:

Demonstrating the thermo-chemical conversion of lignin to jet fuel in an integrated industrial demo scale plant. Objective: construction of a 2,000 ton/y bio jet fuel plant

- Validation at pre-commercial scale of novel technologies for lignocellulosic-based aviation fuel production.
- Design, construction and operation of a first in its kind paraffinic fuel industrial based on innovative second generation technologies
- Address the complete value chain, thus including the conversion of lignocellulosic energy crops and agro residues into biofuel
- Test of jet fuel use in turbines and engines including demonstration flights.

SEN≜SA

CORE-JetFuel

- R&D project to demonstrate on a lab-scale a process that combines concentrated sunlight with CO₂ captured from air and H₂O to produce Kerosene
- Work being carried out:
 - Assessment of the technological potential of solar kerosene
 - Prototype Reactor and Experimental Demonstration
 - Optimized solar chemical reactor design for syngas production
 - Identification of further technology requirements and an initial assessment of the economic potential.

Develop solar-thermochemical conversion and CO2 capture

Solar reactor of Prof. Steinfeld's group at ETH Zürich

3. National initiatives

	Region	Stakeholder Action Group	Feasibility Study	Research and Development	Deployment
Aireg	Germany	\checkmark		\checkmark	
Nisa	Nordic Countries	\checkmark	\checkmark		
Bioport Holland	Netherlands	\checkmark	\checkmark		\checkmark
Bioqueroseno	Spain	\checkmark	\checkmark		\checkmark
Lab'Line for the Future	France				✓
ISAFF	Italy	\checkmark			

• National initiatives usually count with a direct support from governmental institutions, public companies plus participation of industrial partners

3. National Initiatives: Bioport Holland

- Objective: Schipol airport working as a demand centre in the form of an airport and its airlines that is supplied by a dedicated regional supply chain
 - Schipol airport is intended to be logistically supported by the Port of Rotterdam, creating an integrated system
 - Work carried out to account biojet fuel under the RED specifications
 - Current work to set up a government/industry program of 80M Euro to help scaling up the Dutch bio jet industry

3. National Initiatives: Lab'Line for the Future

- Lab'Line for the Future came up as a platform to present the good practices of Air France and its partners
- Carried out a societal study to measure the acceptance of the public
- Launch of a 1 year long program (48 flights) to use 10% farnesane blend on a specific route (Total-Amyris SIP)
 - Route: Toulouse to Paris-Orly
 - 1 flight/week
 - Starting on Sept 2014
 - Total is the partner that validates the supply chain and the logistics
 - Farnesane handling and analytics
 - Blending and analyses
 - Delivery of the blend at the airport
 - Delivey of the blend to the wing with a dedicated re-fueller

Lab'

ine

THANK YOU!

